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Dynamical Bifurcation with Noise 
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It was shown by A. Neishtadt that dynamical bifurcation, in which the control 
parameter is varied with a small but finite speed �9 is characterized by a delay 
in bifurcation, here denoted kj and depending on �9 Here we study dynamical 
bifurcation, in the framework and with the language of Landau theory of phase 
transitions, in the presence of a Gaussian noise of strength ~r. By numerical 
experiments at fixed �9 = �9 we study the dependence of kj on tr for order 
parameters of dimension --<3; an exact scaling relation satisfied by the equations 
permits us to obtain for this the behavior for general �9 We find that in the small- 
noise regime kj(tr) --~ a~(-b), while in the strong-noise regime kj(tr) ----- ce(-d~; 
we also measure the parameters in these formulas. 

1. INTRODUCTION 

Dynamical bifurcation (Neishtadt, 1988a,b), first studied by pure mathe- 
maticians in the context of dynamical systems and bifurcation theory (Neish- 
tadt, 1988a,b; Aframovich et al., 1988), has recently received wider attention, 
not only in the context of mathematics, but also due to its applications, in 
particular physical ones; see, e.g., the proceedings volume edited by Benoit 
(1991) and references therein. The reader is referred to Benoit (1991) for a 
mathematical setting of the theory, and to Lobry (1991) for a general introduc- 
tion; see also Gaeta (1993) for an application to Landau theory and Landau- 
Ginzburg-type equations and transitions with nearly degenerate critical modes. 

The problem of delayed bifurcation in phase transitions with swept order 
parameter--as dynamical bifurcation is also referred to--is also considered 
in the physical literature, mainly in connection with laser problems (van der 
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Broek and Mandel, 1987; Fronzoni et al., 1987; Torrent and San Miguel, 
1988; Lythe and Proctor, 1993). 

In the present contribution we will discuss dynamical bifurcations with 
noise (DBN), more specifically in the context of Landau theory of phase 
transitions (Landau and Lifshitz, 1958) with a scalar or vector order parameter; 
contrary to previous physical contributions, we will not focus on any concrete 
realization, but measure some universal characteristics of this phenomenon, 

We want to discuss how the picture of dynamical bifurcation (which, 
in the present context, refers to dynamical phase transitions) is modified in 
the presence of external noise. In order to do this, we will resort to heuristic 
considerations, and substantiate them by means of a numerical study of 
model equations. 

We will first briefly recall in Section 2 the main feature of dynamical 
bifurcation in the language of Landau theory (with scalar order parameter), 
fix notation, and also recall some standard heuristic reasoning dealing with 
deterministic dynamical bifurcation. 

In Section 3 we will consider the effect of noise, and extend the heuristic 
reasoning of Section 2 to the stochastic case; this will lead us to expect 
different regimes, depending on the ratio of the parameters characterizing the 
stochasticity and the time scale of the deterministic dynamics. The behavior of 
the stochastic system will also be expected to depend on the dimension of 
the order parameter. 

In Section 4 we will present a numerical simulation of dynamical bifurca- 
tion with noise in the case of a scalar order parameter, and confront it with 
the results expected on the basis of our heuristic reasoning. In Section 5 we 
consider the case of vector order parameter, and present similar simulations 
for a vector order parameter of dimension two and three, obtaining a picture 
similar to the one holding for scalar order parameter. 

2. DYNAMICAL BIFURCATIONS 

In the Landau theory of phase transitions with a scalar order parameter 
x, one is faced with a quartic pseudopotential V(x) = hx2/2 + x4/4, and the 
dynamics of the system is described by 

x = X x  - x 3 ( 1 )  

so that for X < 0 the point x = 0 (i.e., the phase it represents) is stable, and 
for h > 0 the stable phase is represented by points x(h) = _ ~/X. The physical 
interpretation of this statement is that if we perform an experiment at different 
values of the control parameter k and wait long enough for the system to 
reach equilibrium, then the observed values Xeq of the order parameter will 
be such that  X2q(h) :-  h. 
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It was remarked by Neishtadt (1988a, b) that this "long enough" time 
could--and indeed does--grow beyond any limit in the vicinity of the critical 
value of h (this corresponds to critical slowing down of the dynamics). 
Moreover, in many experimental situations, one does not actually perform 
separate experiments for different values h, but instead has a single experiment 
in which the value of the control parameter k is varied as slowly as possible, 
and the value o fx  = x(h)  is observed at different values of k, i.e., dynamically 
(this is typically the case in fluid mechanics). For these reasons, it is interesting 
to consider the case where (1) is substituted by the system 

X = (X - x2)x (2) 

h = e  

Notice that now if x0 is very small and we start with h0 = 0, for small times 
the x evolution will be described by • = r which gives x(t) ~-- exp[r i.e., 

x(h) = e x2/(z') (3) 

so that we have an explosivelike behavior. Obviously, once x begins to grow, 
the nonlinear terms counteract the growth, and we only have a jump from a 
phase x = 0 to a phase x = Xeq. This fact is better illustrated by Fig. 1, where 
we numerically integrate equation (2). 

The value of h for which this jump happens will be called the "jumping 
value" hi, and the corresponding value of t will be the "jumping time" tj = 
kj/r These can be defined operationally as the value of h for which the ratio 
0 ( x )  = Ix(X)/xoq(X)l --- 1 is first superior to a given value Po (for k > ~).3 

This delay in joining the Xeq branch is easily understood considering 
that dxeq(h)/dh = h/,fh,  while from (3) we see that for small t, dx(h)/d)t  = 
(h/e)Xo, so that x(h)  cannot follow X~q(h) at least until the two speeds of 
variation are not equal, i.e., up to 

[ E ] I/3. [ iEi ] 2/3 

tJ = L ~ o _  I ' - zx0 xi - -  [ _ = - j  (4)  

3. DYNAMICAL BIFURCATIONS WITH NOISE 

It is quite natural to ask in which way the general description of dynami- 
cal bifurcations--and the situation depicted in Fig. 1--is modified in the 
presence of noise, i.e., if we substitute (2) 

dog : (~kx -- X 3) dt + cr dw (5) 

dR = e dt 

3The restriction X > ~ is due to the fact that we need x0 :~ 0 or the system remains trapped 
in the unstable equilibrium x = 0; the condition can be dropped in the noisy case, as then x0 
can be taken to be zero. 
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F i g .  1 .  D y n a m i c a l  b i f u r c a t i o n  v e r s u s  s t a n d a r d  b i f u r c a t i o n .  T h e  s o l i d  l i n e  r e p r e s e n t s  a n u m e r i c a l  

i n t e g r a t i o n  o f  e q u a t i o n  (2 ) ,  w i t h  a p a r a m e t r i c  p l o t  o f  x ( v e r t i c a l  a x i s )  v e r s u s  h ,  t h e  d a s h e d  l i n e  

t h e  p r e d i c t i o n  o f  s t a n d a r d  b i f u r c a t i o n  t h e o r y ,  i . e . ,  x = , f h .  T h e  j u m p l i k e  b e h a v i o r  i s  e v i d e n t .  

where w ( t )  is the Wiener process with unit variance and the real parameter 
cr --> 0 represents the strength of the noise. 

On the basis of the qualitative discussion of the previous section, we 
expect that, considering x0 = 0, ~0 = 0 (notice that x0 = 0 enforces hj = 
for cr = 0) and fixed e, when observing the dependence of hj on cr, one 
would observe a crossover between a small-noise behavior governed by the 
deterministic dynamics--in which the role of fluctuations is only to drive 
the system out of x = 0 - -and  a strong-noise behavior which is essentially 
governed by fluctuations, with disappearance of the delay in the bifurcation. 

The numerical experiments described below show that both for x scalar 
and x a vector the small-noise behavior is well described by a function of 
the form 

hi(o-) --~ act b (6) 

while the strong-noise behavior is best described by a function of the form 

hj(o-) = ce  -a'r (7) 

It should be noted that (5)--as well as (2)--has a scaling invariance under 

x ---> ax; h ---> a2h; t ---> ec-2t; ~ ~ ecor (8) 

so that the behavior observed for a given value of e and varying cr (or vice 
versa) represents the most general behavior for varying ~, or, through rescaling. 
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Fig. 2. Dynamical bifurcation with scalar order parameter. For the numerical experiment 
described in the text, we plot )tj (vertical axis) as a function of  ~r. The dots represent the data 
from numerical simulation, the solid lines the fits for low-noise and high-noise regimes. (a) A 
linear scale; (b) the data and fits presented in a log-log plot to enhance the different regimes. 

We want to check numerically if the above crossover picture, and the 
claimed behaviors (6) and (7) in the weak- and strong-noise regimes, are 
indeed correct predictions; we would also like to measure the values of the 
parameters appearing in (6) and (7). 

Although some abstract theorems have been proved for dynamical bifur- 
cation with noise (Benoit, 1991), I have not been able to find any quantitative 
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discussion in the mathematical literature; in the physical literature (see, e.g., 
van der Broek and Mandel, 1987; Fronzoni et al., 1987; Torrent and San 
Miguel, 1988; Lythe and Proctor, 1993; and references therein) quantitative 
analytical discussions are considered, as well as experimental measurements 
on systems undergoing dynamical bifurcations, but while analytical results 
in terms of stochastic dynamics (see, e.g., Torrent and San Miguel, 1988) 
are quite general, it seems that numerical characterization was restricted to 
specific systems of physical interest. Thus, I believe this to be the first 
quantitative measurement of the "universal" (model-independent) effects of 
noise in dynamical bifurcations. 

4. NUMERICAL RESULTS 

I have integrated numerically equations (5) in several runs, each of them 
with initial data x0 = 0, k0 = 0 for ~ = 0.01, and using a time step ~t = 
0.01; the terms corresponding to the Wiener process were obtained by a 
Gaussian random number generator. 

The integration was performed over 100 values of ~r, uniformly distrib- 
uted between 0 and 0.01. For each value of ~, I conducted "experiments" 
made by 100 separate runs of the program, and measured the value of k for 
which p(k) -- x(k)/Xeq(k) first became higher than Po = 0.8; this was taken 
as representing the kj(tr). I conducted five such numerical experiments, which 
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Fig. 3. Dynamica! bifurcation with vector order parameter. The data and fits are reported 

in Fig. 2, for the numerical experiments with two-dimensiona| order parameter. 
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Fig. 4. Dynamical bifurcation with vector order parameter. The data and fits are reported 

as in Fig. 2, for the numerical experiments with three-dimensional order parameter. 

showed very little fluctuations between any two sets of data, suggesting the 
statistic is satisfactory already within a single experiment, i.e., with 100 runs 
for each value of cr (see below). The results of this measurement are plotted 
in Fig. 2, the error bars corresponding to fluctuations of  the statistical distribu- 
tion of hj's for each considered cr in different experiments. 

I then attempted to fit the data for kj(cr) obtained in this way by functions 
(6) and (7); i.e., I tried a fit of  the form (6) for small cr and (7) for large or. 
The functions (6), (7) do indeed provide the best fits to the numerical data 
among the different functions I tested, and were chosen for this reason. 

The best fit, represented by the continuous lines in Fig. 2, was found 
to correspond to the approximate values 

a = 0.142, b = 0.105; c = 5.178, d = 851.0 (9) 

The statistical significance for the weak-noise-regime (tr <- 0.0020) fit and 
the one for the strong-noise-regime (~ > 0.0045) fit were both approximately 
0.99, on the basis of a X 2 test. 

5. V E C T O R  O R D E R  P A R A M E T E R  

Equation (2) is immediately generalized to the case of a vector order 
parameter, i.e., if x E R", then x 2 should be understood as (x, x) with (., .) 
the standard scalar product in R". 
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Table I. Parameters Providing the Best Fits of Numerical Data as Reported in Figs. 2-4 
with Low- and High-tr Regimes Described by Functions of the Form (6) and (7), 

Respectively 

dim a b c d 

1 0.142 0.105 5.178 851 
2 0.069 0.340 96.97 1645 
3 0.054 0.341 886.8 2552 

Similarly, the heuristic considerations presented on (2) also immediately 
generalize to (2'), so that we expect a similar behavior for the vector case; 
it should be mentioned that the crossover between the weak-noise and the 
strong-noise regimes is expected to be located at higher values of tr, for 
dimensional considerations on Brownian noise trajectories. 

I conducted a numerical experiment for the cases x E R 2 and x E R 3, 
with the same setting and procedure as in the scalar case (here one confronts 
Ixl and v/-h); in these cases, only one set of 100 separate runs for each value 
of cr was conducted, justified by the observations on the statistics in the 
scalar case. The results of these numerical experiments are given by Figs. 3 
and 4, respectively. 

The parameters characterizing the fit with functions of the form (6) and 
(7) are given in Table I, where the corresponding values for the scalar case 
are also reported again for completeness. 

6. CONCLUSIONS 

We have shown that the expectation, based on heuristic considerations 
sketched in our previous discussion, of a crossover between different regimes 
(weak and strong noise) is well confirmed by the numerical experimental 
data; moreover, we have been able to fit satisfactorily the numerical data 
with an inverse power for weak noise and with an exponential for strong 
noise, as in formulas (6) and (7); and to measure the values of the parameters 
appearing in (6) and (7). This was done both in the case of  scalar order 
parameter and of vector order parameter of dimension two or three. 

As already mentioned, although the numerical experiments were con- 
ducted at a fixed value of r the scaling properties of (5)--given by (8 ) - -  
extend the validity of these to the case of general e. 

We have not conducted any numerical investigation for a vector order 
parameter of dimension greater than three. We have also not attempted to 
discuss the form of the functions (6) and (7) describing the different limit 
regimes, limiting ourselves to a numerical investigation. 
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